NRA TIM #4

Technologies Enabling All-Weather Maximum Capacity by 2020

Self Assessment Results

Jimmy Krozel, Ph.D.

Presented at NASA Ames Research Center

Moffett Field, CA

February 10-11, 2004

Agenda:

- Vision
- Core Ideas
- Anticipated Benefits
- Approach to Self Assessment
- Metrics
- Results for Self Assessment
- Challenges Ahead
- Conclusions

Vision:

Provide an innovative, gate-to-gate solution to predicting and minimizing the effects of weather on National Airspace System (NAS) performance, working toward <u>all</u>-weather Maximum Gate-to-Gate Capacity by 2020.

Core Idea Triad:

Situation Awareness, Coordination, and Information Transfer

Flexible Traffic _____ Management Considering Weather Constraints Prediction (Coupled Weather and Traffic Prediction)

Anticipated Benefits:

- More Accurate Take Off Times due to constraint management, better weather information and predictions, and EDCT compliance via DSTs
- Increased Safety due to better predictions of aircraft trajectories clear of hazardous weather
- Increased airport and en route Throughput through weather avoidance algorithms that dynamically adjust flows to weather constraints
- Delay Savings facilitated by weather constraint planning directly benefits airline schedule integrity

Anticipated Benefits:

- User Preferences included in solutions
- Equity enforced through user preferences and fair DST solutions
- Human Factors benefits from a common situation awareness and better human-computer interfaces
- Reduced Environmental Emissions due to reduced taxi times and fewer airborne delays and less airborne holding per flight

Approach to Self Assessment:

Today's NAS without Weather

Reference point for capacity on a typical day in today's NAS

Benefit of the All-Weather Capacity-Increasing Concept if implemented in today's NAS Benefit of the All-Weather Capacity-Increasing Concept if implemented in the future NAS

- Investigate tradeoffs for different types of days (or ¼ hours)
 in the NAS
 - No Weather
 - Typical Weather

- Severe Weather
- Rare Weather

Self Assessment Setup:

- Select Domain of Interest
 - Surface
 - Transition
 - En Route
- Select Parameterizations
- Select Metrics
- Establish Scenarios of Interest
- Run Experiments

Metric	Category			
Capacity	Airport Capacity			
	En Route Sector Capacity			
	NAS Capacity			
	Throughput			
Flexibility	User Preference			
	Equity			
Efficiency	Government, Airline, & Passenger Costs			
	Airspace Utilization			
Predictability	Time Variability			
	EDCT Compliance			
	Sector Demand			
Safety	Weather Exposure			
	Conflict Alerts			
	Workload			
Environment	Noise			
	Pollution			
Delay	Average Delay			
	Average Block Time			
Human	Human Performance			
Factors	Human Behavior			
	Preference Metrics			

Weather Related Metrics:

NWS Weather Levels

NWS Level	Color	Rainfall Rate (mm/hr)	Reflectivity (dBZ)	Туре
0	None	<0.49	dBZ<18	None
1	Light Green	0.49 - 2.7	18≤ dBZ<30	Light Mist
2	Dark Green	2.7 - 13.3	30≦ dBZ <41	Mod.
3	Yellow	13.3 - 27.3	41≤ dBZ <46	Heavy
4	Orange	27.3 - 48.6	46≤ dBZ <50	Very Heavy
5	Deep Orange	48.6-133.2	50≤ dBZ <57	Intense
6	Red	>133.2	57≤ dBZ	Extreme

Airport Weather Severity Index (WSI)

$$WSI = \int wds$$
 $region$

Weather Severity Index computed for a circular region around the airport up to the metering fix locations

Metering Fix

Weather Severity Index computed for a wedge shaped region associated with a metering fix

Additional Weather Related Metrics:

Deviation from User Preference

$$\delta R = R_{MILES\ FLOWN} - R_{MILES\ PLANNED}$$

Sector Delay due to Weather

$$S_{eff} = DirectToDist/(T_B-T_A)$$

$$S_{ave} = FlownDist/(T_B-T_A)$$

$$Delay = \frac{S_{Eff}}{S_{Ave}}(T_B-T_A)$$

Example Parameterizations:

Weather Severity

Example Parameterizations:

Wind Shift and Convective Weather Prediction Accuracy

- EDCT Compliance
- De-Icing Condition
 - At Gate vs At De-Icing Spot Location
 - No De-Icing vs De-Icing (Single-Stage) vs De-Icing/Anti-Icing (Two-Stage)

Core Idea 1:

Situation Awareness, Coordination, and Information Transfer

Flexible Traffic _____ Management Considering Weather Constraints

- PreflightTerminal
- Surface En Route

Prediction
(Coupled Weather and Traffic Prediction)

Core Idea 1.1: Pre-Flight Planning to Manage Airport Flow Rates

- Long-Term Probabilistic Weather Forecasts
- Airport GDPs
- Fix-Based GDPs (w&w/o En Route Cornerpost Swaps)
- Distance-Based 1st Tier, 2nd Tier GDPs
- Multi-Airport GDPs
- Cancellations
- User Priorities and Constraints

Airport vs Fix-based GDPs

 What could we do with improved weather prediction accuracy and pre-flight GDPs?

ORD simulation with weather prediction accuracy varied spatially and temporally in a controlled experiment.

A positive weather time shift denotes forecast weather later than actual weather.

16 NRA TIM #4

Airport GDPs vs Fix-based GDPs with Cornerpost Swaps

 What if we could plan cornerpost swaps en route during the GDP implementation?

ORD simulation with weather prediction accuracy varied spatially and temporally in a controlled experiment.

A positive weather time shift denotes forecast weather later than actual weather.

NRA TIM #4

17

Core Idea 1.2: Precise Control of Take Off Time to Address Weather Constraints

- Passback of Terminal/Transition airspace weather constraints for departure flights
- Ground Stop and GDP EDCTs in support of SWAP
- APREQs for timing of departure releases for capping /
 LAADR maneuvers into overhead streams
- EDCT Compliance through SMS, including coordination of de-icing and snow removal vehicles on runways
- Augmented Reality, HUD, and EMM Displays for low and zero visibility conditions

SMS Planning for a Configuration Change

- Proactive: Direct aircraft to new runways based on the prediction of when the wind shift occurs
- Reactive: Direct aircraft to new runways only after the wind shift occurs; some aircraft will have to re-route to new runways

A positive weather time shift denotes winds that occur later than planned.

SMS EDCT Compliance during Configuration Changes

 Taxi Urgency: Amount of time the OUT time is ahead of the OFF time (relative to EDCT) ... can EDCT compliance be met by SMS?

Core Idea 1.3: Weather Avoidance in the TRACON

Core Idea 1.4: Weather Avoidance Algorithms for the Transition Airspace

Departure Flow
Unaffected by Arrival
Flow Weather
Avoidance Route

Departure Flow Re-Designed with Arrival Flow Weather Avoidance Route

Example Transition Airspace (1)

Example Transition Airspace (2)

Example Transition Airspace (3)

METRON AVIATION

Example Transition Airspace (4)

Core Idea 1.4: Weather Avoidance Algorithms for the Transition Airspace

Current CDRs Extend from Departure Airport to Arrival Airport

Range-Based CDRs Extend out a Fixed Range and Merge with Free Flight Airspace, Standard Jet Routes, or Playbook Plays

Method 1: Alternate Waypoints via Variable SIDs & STARs

NRA TIM #4

METRON AVIATION

28

Concept: Single, Double, Triple Metering Fixes

- 2x Throughput: Can we create 2 Metering Fixes that are closely spaced together to meter 2x the Fix Throughput to an airport?
- 3x Throughput: Can we create 3 Metering Fixes?

Method 2: Non-Intersecting Parallel Flows to Single, Double, or Triple Metering Fixes

Method 3: Free Flight to Single, Double, or Triple Fixes

Comparison: Variable STARs vs Parallel Routes

Note: Only Arrival Routes are Shown

Comparison:

Comparison:

Comparison:

Comparison: Parallel Jet Routes vs Free Flight to Single, Double, or Triple Fixes

Core Idea 1.5: Wind-Optimal Free Flight Routes

Method of Jardin (NASA) modified to avoid large Weather Constraints

Core Idea 1.5: Weather Avoidance Algorithms for En Route Aircraft

Parallel Routes Dynamically Defined Around Weather Constraints

1 Flow

2 Flows

3 Flows

4 Flows

Core Idea 1.6: Coordination of Large Scale TFM Plans

Parallel Routes Applied to Playbook Plays

Core Idea 1.6: Coordination of Large Scale TFM Plans

Parallel Routes Applied to Playbook Plays

NRA TIM #4

Core Idea 2:

Situation Awareness, Coordination, and Information Transfer

Flexible Traffic _____ Management Considering Weather Constraints

Prediction (Coupled Weather and Traffic Prediction)

- Estimated Times of Arrival
- Sector Counts
- Flow Rates: AARs and ADRs

Core Idea 2.1: Incorporate Weather Predictions into ETAs

$$\sigma^{2} = \frac{1}{N} \left[\sum_{i=1}^{N} ETA(X_{i}, \Theta_{i})^{2} \right] - ETA_{R}^{2}$$

Core Idea 2.2: Sector Demand Predictions and Weather

- Estimate Sector Loads based on Trajectory Predictions that include Weather Constraints
- Dynamically adjust the Sector Load Capacity to account for the amount of Unused Hazardous Airspace Present in the Sector

Core Idea 2.2: Self Assessment Result

Constraint: 1x Capacity Limit

Core Idea 2.2: Self Assessment Result

Constraint: 2x Capacity Limit

Core Idea 2.2: Self Assessment Result

Constraint: 3x Capacity Limit

Core Idea 3:

Situation Awareness, Coordination, and Information Transfer

- Coordination of Weather Information
- Shared Situation Awareness
- Coordination of User Goals and Constraints

Flexible Traffic _____ Management Considering Weather Constraints

Prediction
(Coupled Weather and Traffic Prediction)

Core Idea 3.1: Coordination of Weather Information

 Weather information (actual weather and its effects) from a variety of sources needs to be collected, compared, integrated, fused, coordinated, and distributed.

 Information on the surface needs to be combined with information in the air to provide NAS-wide mosaic of weather conditions affecting all phases of flight

Sources include:

- MDCRS data
- PIREPs
- Radar Data
- Satellite Data
- Surface Conditions

Core Idea 3.2: Shared Situation Awareness

- The User Triad needs to share the same perspective, or awareness, of weather-related information, so that the best strategy for mitigating weather effects can be communicated and coordinated
- Shared awareness can be accomplished through both a common view and a remote perspective view
- Users must have quick and easy access to this shared mode
- A secure NAS state/weather information distribution network and a unique user interface concept are required

Core Idea 3.3: Accommodate NAS User Goals/Constraints

OMA DSM

Weather Reroute Advisories
 that assign aircraft to routes
 they are unable to fly because
 they can't be fueled for that
 long a route

E.g., An F100
 cannot fly a
 major reroute
 DFW to ORD
 (pink route on
 the left on map)

ĎΤV

SHAY ATL

CLE

Challenges Ahead

- Integration of Concepts into ACES Simulation Environment
- Extension of Concepts e.g., how do you adjust sector capacities when two adjacent sectors have vastly different weather coverage but a common jet route?

 TRACON Routes from single, double, or triple fixes to the runways

Challenges Ahead

Rollup – NAS-Wide Extrapolation with ACES to 2020

Conclusions

- Weather poses Complex Constraints that affect each domain of the NAS differently, varying day by day
- Self Assessment evaluated Core Ideas on different types of weather (typical, severe, rare) and for 2002 vs. 2020 over all domains of interest
- Core Ideas Required to address weather constraints:
 - Flexible Traffic Management Considering Weather Constraints
 - Prediction (Coupled Weather and Traffic Prediction)
 - Coordination and Information Transfer supporting a Shared Situation Awareness

Point of Contact

